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1. INTRODUCTION

On the surface, companies from industry sectors such as mining, construction, manufacturing,

and service would appear to be very different.  Certainly, the physical activities involved and

the resulting products are different.  At a conceptual level, however, each of these companies

can be viewed as a complex system trying to utilize its resources to maximize its performance.

The ability of managers and workers to control and monitor the operations within such a

system has a great impact on its performance.

  This chapter addresses three issues related to controlling and monitoring operations In

such a system: architectures to organize those operations, artificial intelligence techniques for

scheduling those operations, and commercial software to implement monitoring and control.

The principal application focus of this chapter is manufacturing, but the ideas can be applied to

a wide range of complex systems

2. CONTROL ARCHITECTURES

Decisions, decisions, decisions - factory managers make them and factory workers implement

them everyday.   Some decisions impact events immediately; others impact events months or

years into the future.  Industry, academia, government agencies, and standards bodies have

expended considerable effort to develop architectures that (1) organize and integrate these

decisions in some meaningful way and (2) specify the information required to make those



decisions monitor their execution, and control their implementation.  This section describes

two such architectures.

2.1 The Purdue Enterprise Reference Architecture (PERA)

A tree structure, hierarchy, is one of the most common ways of organizing functions and

activities.  Many such hierarchies have been proposed for decision making and control within

manufacturing systems (Jones 1990).   The Purdue Enterprise Reference Architecture (PERA),

which was developed by a collection of industrial and academic representatives, is one such of

the factory as well as the control functions and information requirements (Williams 1992).

Originally, the architecture was aimed at the process industry, it has been developed so that it

can be used across all types of manufacturing. The material in the following sections is taken

from Annex D and Section 5.1 of ANSI/ISA-S95.00.01-2000, Enterprise-Control System

Integration Part 1: Models and Terminology (ANSI/ISA 2000).

2.1.1 Control hierarchy

Figure 1 shows three levels of the PERA functional hierarchy model at which decisions are

made: business planning and logistics, manufacturing operation, and control.   Level 4 and

Level 3 deal with plant production scheduling, operation management, and plant floor

coordination.  Levels 2, 1, and 0 decompose control functions for three types of

manufacturing:

batch, continuous, and discrete.  This decomposition defines the cell or line supervision

functions, operations functions, and process control functions.  There are several different

execution methods for these functions, which are based on the actual production strategy used.
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Figure 1. Decision-making and control hierarchy

Level 4 performs the following major functions: capacity planning, plant

production scheduling, materials requirements planning, and all manufacturing-related

purchasing.   It establishes and modifies the basic plant production schedule for orders

received based on resource availability changes, energy sources available, power

demand levels, and maintenance requirements.  It develops preventive maintenance and

equipment renovation schedules in coordination with the basic production schedule. It

determines the optimum inventory levels of raw materials, energy sources, spare parts,

and of in-process goods. Finally, it collects, maintains, and provides data on a large

number of items.  These items include: raw material and spare parts usage, overall

energy use, goods in process, inventory, control files as they relate to customer

requirements, machinery and equipment utilization and history files, and manpower use

data for transmittal to personnel and accounting.

Level 3 is the principal level of interest in this chapter.  Therefore, we provide detailed

descriptions of the major activities performed at this level.

Resource allocation and control - manage those resources directly associated with

control and manufacturing.  These resources include machines, tools, labor skills,



materials, other equipment, documents, and other entities that must be available for

work to start and to be completed.   The management of these resources may include

local resource reservation to meet production-scheduling objectives, the assurance that

equipment is properly set up for processing, the responsibility for providing real-time,

resource status and a history of resource use.

Dispatching- manage the flow of production in the form of jobs, orders, batches, lots,

and work orders by dispatching production to specific equipment and personnel.  The

flow is governed by the sequence of operations, which determines the order the work

is done and the time that work starts and stops.  It is possible to change the sequence or

times in real time as events occur on the factory floor; however, those changes are

made within agreed upon limits, based on local availability and current conditions.

Dispatching of production includes the ability to control the amount of work in process

through buffer management and management of rework and salvage processes.

Data collection and acquisition- manage the operational production and parametric data

that is associated with the production equipment and production processes, provide

real-time status of the equipment and processes, and  keep a history of production and

parametric data.

Quality management - provide real time measurements collected from manufacturing

and analysis in order to assure proper product quality control and to identify problems

requiring attention.  This includes SPC/SQC tracking and management of off-line

inspection operations and analysis in laboratory information management system

(LIMS). This activity may recommend actions to correct the problem, including

correlating the symptoms, actions and results to determine the cause.

Process management - monitor production and provide decision support to operators

who correct and improve in-process functions.  These functions may be intra-

operational - focusing specifically on machines or equipment being monitored and

controlled - or inter-operational - tracking the process from one operation to the next.

It may include alarm management to alert factory personnel of process changes that

are outside of acceptable tolerances.

Production planning and tracking - provide the status of production and the disposition

of work.  Status information may include personnel assigned to the work; component

materials used in production, current production conditions, and any alarms, rework,

or other exceptions related to the product.



Performance analysis - provide up-to-the-minute reporting of actual manufacturing

operations results along with comparisons to past history and expected results.

Performance results include such measurements as resource utilization, resource

availability, product unit cycle time, conformance to schedule, and performance to

standards.  Performance analysis may include SPC/SQC analysis and may draw from

information gathered by different control functions that measure operating parameters.

Operations and detailed scheduling - generate sequences that optimize some objective

(such as minimize set-up time) based on priorities, attributes, characteristics, and

production rules associated with specific production equipment and specific product

characteristics.  This activity is carried out using the current estimate of unused

capacity and recognizing alternative and overlapping/parallel operations.

Document control -  control records and forms that must be maintained with the

production unit. The records and forms include work instructions, recipes, drawings,

standard operation procedures, part programs, batch records, engineering change

notices, shift-to-shift communication, as well as the ability to edit "as planned" and "as

built" information.  This activity is responsible for providing data to operators and

recipes to device controls and for maintaining the integrity of regulatory,

environmental, health and safety regulations, and SOP information such as Corrective

Action procedures.

Labor management - provide status of personnel in real time.  This activity includes

time and attendance reporting, certification tracking, as well as the ability to track

indirect functions such as material preparation or tool room work as a basis for activity

based costing.  It may interact with resource allocation to determine optimal personnel

assignments.

Maintenance management - maintain equipment and tools.  This activity ensures the

availability of equipment and tools for manufacturing and manages a history of past

events or problems to aid in diagnosing problems.

2.1.2 Equipment Organization

The hierarchy described above deals with the decision-making, control, and information

needed to manage the physical assets of a manufacturing enterprise.  Those assets are usually

organized in a tree structure such as the one described in Figure 2.  Lower level groupings are

combined to form higher level entities.  In some cases, a grouping within one level may be



incorporated into another grouping at that same level.  In the following section, we define the

areas of responsibility for the different levels defined in the hierarchical model and some of the

objects used in the information exchanged within and across those levels.
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Figure 2.  Typical equipment organization

Enterprise - a collection of one or more sites.  The enterprise is responsible for

determining the products to be manufactured, where they will be manufactured, and

in general how they will be manufactured.  Level 4 functions are generally dealing at

the enterprise and site levels.  However, enterprise planning and scheduling may

involve areas, cells, lines, or units within an area.

Site - a physical, geographical or logical grouping determined by the enterprise.  It may

contain areas, production lines, process cells, and production unit that have well

defined manufacturing capabilities.  The level 4 functions at a site include local site

management and optimization.  Site are often used for rough cut planning and

scheduling, which may involve cells, lines, or units within the areas.

Area - a physical, geographical, or logical grouping, which may contain process cells,

production units, and production lines.  The main production capability and

geographical location within a site usually identify areas. Areas generally have well



defined manufacturing capabilities and capacities that are used for planning and

scheduling at levels 3 and 4.  An area is made up of lower level elements that perform

continuous manufacturing operations, discrete (repetitive and non-repetitive)

manufacturing operations, and batch manufacturing operations.  An area may have

several of these elements in varying combinations depending upon the manufacturing

requirements.  For example, a beverage manufacturer may have an area with

continuous mixing equipment that feeds a batch process cell for batch processing that

feeds a bottling line for discrete bottling process.  Depending on the planning and

scheduling strategy selected, the level 4 functions may stop at the area level or they

may schedule the functions of the lower level elements within the areas.

Production units - the lowest level of equipment typically scheduled by the level 4 or

level 3 functions for continuous manufacturing processes.  Production units are

composed of lower level elements, such as equipment modules, sensors, and

actuators.  Production units have well defined processing capabilities and throughput

capacities and these are used for level 3 functions. The capacities and capabilities are

also often used as input to level 4 scheduling, even if the production units are not

scheduled by the level 4 functions.

Production lines and work cells - the lowest levels of equipment typically scheduled by

the level 4 or level 3 functions for discrete manufacturing processes.  Work cells are

usually only identified when there is flexibility in the routing of work within a

production line. Production lines and work cells may be composed of lower level

elements.   Production line and work cells have well defined manufacturing

capabilities and throughput capacities and these are used for level 3 functions. The

capacities and capabilities are also often used as input to level 4 scheduling, even if

the production lines and work cells are not scheduled by the level 4 functions.

Process cells and units - the lowest level of equipment typically scheduled by the level

4 and level 3 functions for batch manufacturing processes.  Units are usually only

identified at levels 3 and 4 if there is flexibility in the routing of product within a

process cell.  The definitions for process cells and units are contained in the IEC

61512 and ISA S88.01 standard. Process cells and units have well defined

manufacturing capabilities and batch capacities and these are used for level 3

functions. The capacities and capabilities may also be used as input data for level 4



scheduling, even if the process cells or units are not scheduled by the level 4

functions.

2.1.3 Status

The PERA plays a critical role in two standards -  one being developed by SP95 of ISA

(Instrument Society of America) and the other by TC 184/WG 1 of ISO (International

Standards Organization).  SP95 seeks to create standards for the interfaces between control

functions and other enterprise functions (http://www.isa.org/sc/committee/1,1512,145,00.html)

based upon the PERA.  The interface initially considered is the interface between levels 3 and

4 of that model. Additional interfaces will be considered, as appropriate.   WG 1 has published

the PERA as an Annex (http://www.nist.gov/sc5wg1/gera-std/15704fds.htm) to ISO 15704,

Requirements for Enterprise Reference Architectures and Methodologies, which is a final draft

international standard (http://www.nist.gov/sc5wg1/gera-std/15704AB.htm.  From the WG1

perspective, PERA is an example of a generalized enterprise reference architecture, GERAM.

A GERAM defines a tool-kit of concepts for designing and maintaining enterprises for their

entire life history and it is meant to organize existing applications in all types of enterprises.

An advantage is that previously published reference architectures can keep their own identity,

while identifying through GERAM their overlaps and complementing benefits compared to

others.

2.2 SEMATECH CIM Framework

The CIM Framework, developed by SEMATECH, defines a standard component architecture

and application component interfaces for manufacturing information and execution systems

(MIES) software  (Doscher 1998) - the following material is taken largely from (Hawker

1999).   The CIM framework is not hierarchical in nature; rather, it leverages distributed,

object-oriented computing technology.  Additionally, it uses middle-ware standards from the

Object Management Group (OMG) (http://www.omg.org) to enable integration of the

applications.



The CIM Framework software architecture was designed to enable the following

capabilities:

Integration - applications can cooperate by exchanging data, providing services

(client/server method invocation), publishing service exceptions, and publishing and

subscribing to events

Interoperability - applications from one supplier or source can be replaced easily with a

functionally equivalent application (conformant to standard interface and behavior)

from another source

Flexibility - components and applications can be configured in a variety of ways that

meet specific needs

Reuse - new systems can be implemented from standard components or applications

more quickly, at lower cost and with higher quality

The major benefit of this framework is a significant reduction in the cost and time involved in

building, modifying, and enhancing MIES software in response to changing business needs.

Adherence to the framework allows semiconductor manufacturers to integrate applications

from multiple suppliers with their legacy systems and to replace or upgrade these applications

and systems over time.

2.2.1 CIM Framework component architecture

The CIM Framework architecture is a layered system, which enables distributed, object-

oriented applications assembled from common software components to interoperate as a

single, integrated system.

Figure 3.  CIM framework architecture layers
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The integration infrastructure is based on specifications in the Object Management

Architecture (OMA) from the OMG (OMG 1995, 1996, 1997a).  These specifications define

standard services for distributed object communications, persistence, transactions, name

services, and so forth.   On top of the infrastructure, the CIM Framework architecture defines

common application components.   Components are software building blocks that implement

some collection of functions.  Typically, each MIES application will be composed of many

such components.   The CIM Framework common components layer defines standard models

for application components that are common across MIES applications.  Examples include a

Machine Management Component, a Product Management Component, and a Person

Management Component.  The Machine Management Component includes machine resources,

sensors, process capabilities, and relations to material and recipes.  The Product Management

Component includes product material, lots, and relations to product and process specifications.

The Person Management Component includes persons, qualifications and relations to skills

and skill requirements. This common application model, defined in terms of common software

components, is the framework for building integrated MIES applications.

 The application objects layer of the CIM Framework architecture provides additional

functionality, extending the common components to make a complete MIES.  This layer,

which is identified but not specified, enables MIES suppliers and users to define product-

specific and site-specific application objects and components that use and extend the CIM

Framework common components to implement MIES functions that meet business needs.



Figure 4.  CIM Framework component architecture.

A given MIES application, as shown in Figure 4, implements some common components

and application objects and interoperates (via the infrastructure) with other common

components and application objects implemented in other MIES applications.  The collection

of interoperating MIES applications provides a complete, integrated, MIES solution.

2.2.2 Component specification methodology

The key to the CIM framework is the specification of components.  The CIM Framework uses

the following modeling methods to specify components:

• component relationship models showing interaction between “medium-grained”

components (larger than an object, smaller than an application);

• component information models showing object interfaces and relationships in the

form of OMT (Object Modeling Technique) diagrams (Rumbaugh et al 1991);

• object interface definitions using OMGs Interface Definition Language (IDL);

• published and subscribed events using an extension to OMG IDL;



• component interaction diagrams showing scenarios that trace messages and events

between components;

• state transition diagrams as Harel state charts (Harel 1987) and state definition

tables.

These modeling methods go far toward specifying components that MIES implementers can

“plug-and-play” into integrated systems.  SEMATECH is also working in the OMG Business

Objects Domain Task Force to define and standardize additional methods for even richer

semantic models, including the specification of method pre-conditions and post-conditions,

roles, rules, and dependencies (http://www.omg.org/homepages/bodtf/).

 2.2.3 Shop Floor Application Modules

The CIM Framework specifies application components for Manufacturing Information and

Execution Systems (MIES).  MIES perform factory operations functions, in the context of

Enterprise Information and Control Systems and systems that automate material processing,

storage and movement.  Figure 5 shows the MIES functional groups in the CIM Framework.

Figure 5. Functional groups for MIES

Each functional group defines a collection of related application components.  Table 1 lists

the CIM Framework components in each functional group.  The functional groups are a

convenient mechanism to organize the CIM Framework components; they are not rigid

partitions and suppliers can deliver applications that span functional groups or that implement

only some of the components of a group.  In contrast, the component is the smallest-grained

entity that suppliers can deliver.  A supplier must implement all the interfaces and behaviors of

a component in order to claim conformance to that component specification.

Table 1.  CIM Framework application components

Factory Services Material Management Process Specification Management

Document Management Product Management Process Specification

Version Management Durable Management Process Capability



History Management Consumable Management

Event Broker Product Specification Schedule Management

Bill of Material Dispatching

Factory Management

Factory Advanced Process Control Machine Control

Product Release Plugin Management Machine Management

Factory Operations Plugin Execution Recipe Management

Control Management Resource Tracking

Factory Labor Control Execution

Person Management Control Database Material Movement

Skill Management Data Collection Material Movement

The value and power of the CIM Framework is the application model, which specifies

medium-grained components common to MIES applications.  The SEMATECH CIM

Framework Specification Version 2.0 (Doscher 1998) has almost 300 pages of detailed

component models specified using the methodology of Section 2.3.  Section 4 presents a

portion of the CIM Framework Product Management component to illustrate the style and

detail of the specification.  By developing industry-wide consensus on these component

definitions, SEMATECH has enabled manufacturers to quickly and cost-effectively build,

modify and enhance MIES by assembling standards-conformant components from multiple

suppliers.

2.2.4 Status

Six of the CIM Framework specifications have become SEMI (Semiconductor Equipment and

Materials International) standards (http://www.semi.org/web/wstandards.nsf/).  These

standards were developed with the cooperative efforts of both users and suppliers of

semiconductor MES software systems.  Active efforts are underway to add another standard

for the CIM Framework Scheduling Component by the end of 2000, and there is interest in

working on Factory Operations and Production Machine components (Hodges 2000).  While



there may be few instances of fully compliant MES products being shipped, we believe that

vendors are using the standards in their product development process and plans. The customers

of these MES products are also using the adopted standards in integration efforts that combine

best-in-class components into working factory systems.

3.  AI Approaches to Shop Floor Scheduling and Control

In the preceding section, we described two architectural approaches for organizing functions

related to shop floor scheduling control.  One of the most important of these functions is

scheduling.  Another chapter reported on two major approaches to solving these problems:

mathematical programming and heuristics. In this chapter, we describe a number of AI

(artificial intelligence) techniques.

3.1 Knowledge Based Systems

Expert and knowledge-based systems were quite prevalent in the early and mid 1980s.   They

have four main advantages.  First, and perhaps foremost, they can use both quantitative and

qualitative knowledge in the decision-making process.  Second, they are capable of generating

heuristics that are more complex than the simple dispatching rules described in an earlier

chapter.  Third, the selection of the best heuristic can be based on information about the entire

shop including current jobs, expected new jobs, and the status of all resources.  Fourth, they

capture complex relationships in elegant, new, data structures and they contain special

techniques for manipulation of these data structures.   They are, however time consuming to

build and verify, difficult to maintain and change, and generate only feasible solutions that can

be quite far from the optimum.

3.1.1 Generating the Required Knowledge base

Formalizations of the knowledge that human experts use  - rules, procedures, heuristics, and

other types of abstractions - are captured in the knowledge base.  Three types of knowledge,

procedural, declarative, and meta, are usually included.  Procedural knowledge is domain-



specific, problem-solving knowledge. Declarative knowledge provides the input data that

defines the problem domain.  Meta knowledge is knowledge about how to use the other

knowledge to solve the actual problem.  Several data structures have been proposed to

represent the knowledge including semantic nets, frames, scripts, predicate calculus, and

production rules.  The inference engine implements a strategy to apply to the knowledge to

obtain a solution to the problem at hand.  It can be forward chaining (data driven) or backward

chaining (goal driven).

The first step in developing a knowledge base is knowledge acquisition, which is a two

step process: get the knowledge from knowledge sources and store that knowledge in digital

form.  Knowledge acquisition, such as protocol analysis, machine learning, and interactive

editing (Shaw et al., 1992), has been an active area of research.  Knowledge sources may be

human experts, simulation data, experimental data, databases, and documents.  In scheduling

problems, the knowledge sources are likely to be human experts or simulation data.  To extract

knowledge from these two sources, any technique that learns from examples (data) becomes a

promising tool.  Inductive learning, which is a state classification process, is one such

technique.  If we view the state space as a hyperplane, training data (consisting of conditions

and decisions) can be represented as points on that hyperplane.  The inductive learning

algorithm seeks to draw lines that divide the hyperplane into several areas within which the

same decision (conclusion) will be made.

Quinlan (1986) developed an algorithm, which implements the inductive learning

paradigm, called Iterative Dichotomister 3 or ID3. ID3 uses examples to induce production

rules (e.g. IF ... THEN ...), which form a simple decision tree.  Decision trees are one way to

represent knowledge for the purpose of classification.  The nodes in a decision tree correspond

to attributes of the objects to be classified, and the arcs are alternative values for these

attributes.  The end nodes of the tree (leaves) indicate classes to which groups of objects



belong.  Each example is described by attributes and a resulting decision. To determine a good

attribute, which is the basis for an object-class partitioning, entropy is employed.  Entropy is a

measure of the information content of each attribute.  Rules are derived through a repetitive,

decomposition process that minimizes the overall entropy.

The attribute with the minimum entropy value will be selected as a node in the decision

tree.  The arcs out of this node represent different values of this attribute. If all the objects in an

arc belong to one class, the partition process stops.  Otherwise, another attribute will be

identified using entropy values to further partition the objects that belong to this arc.  This

partition process continues until all the objects in an arc are in the same class.  Before applying

this algorithm, all attributes that have continuous values need to be transformed to discrete

values.

In the context of job shop scheduling, the attributes represent system status and the classes

represent the dispatching rules.  Very often, the attribute values are continuous.  Yih (1990)

proposed a trace-driven knowledge acquisition (TDKA) methodology to deal with continuous

data and to avoid the problems that occur interviewing human experts.  TDKA learns

scheduling knowledge from expert schedulers without resorting to an interview.  There are

three steps. In Step 1, an interactive simulator is developed to model the system of interest.

The expert will interact with this simulator and make decisions.  The entire decision-making

process will be recorded in the simulator and can be repeated for later analysis.  The pair,

system information and scheduling decision, is called a "trace."  Step 2 analyzes the "trace"

and proposes classification rules to partition the trace into groups.  The partition process stops

when most of the cases in each group use the same dispatching rule (error rate is below the

threshold defined by the knowledge engineer).  Then, the decision rules are formed.  The last

step is to verify the generated rules.  The resulting rule base is used to schedule jobs in the

simulator. If it performs as well as or better than the expert, the process stops.  Otherwise, the



threshold value is increased, and the process returns to Step 2. This approach was applied in an

electroplating process line and the rule base system outperforms the users.  Later, Yih (1994)

developed a prolog-based controller that handles the time-window problems in the same

manufacturing environment.

3.1.2 Applications to Scheduling and Control

ISIS (Fox 1983) was the first expert system aimed specifically at job shop scheduling

problems.  ISIS used a constraint-directed-reasoning approach with three constraint categories:

organizational goals, physical limitations, and causal restrictions.  Organizational goals

specified five objective functions based on due-date and work-in-progress.  Physical

limitations specified the processing capability of each resource.  Casual restrictions included

all procedural constraints and resource requirements.  Several issues related to these

constraints were considered such as conflicts among constraints, relative importance of

constraints, and interactions of constraints.  ISIS used a three level, hierarchical, constraint-

directed search.  Orders were selected at level 1.  Capacity analysis was performed at level 2 to

determine the availability of the resources required by the order.  Detailed scheduling was

performed at level 3,to assign times to the resources identified at level 2. ISIS utilized its

constraint knowledge to maintain the consistency of the schedule and to identify scheduling

decisions that would result in poorly satisfied constraints.  It also included the capability to

construct and alter schedules interactively. Chiu and Yih (1995) proposed a learning-based

approach for dynamic scheduling in a distributed manufacturing system.  An incremental

approach to training a decision tree is proposed in this study.  Each training sample consists of

system attributes as inputs and a dispatching rule as its output.  In their work, simulations are

conducted first to collect some scenarios, and then the genetic algorithm is performed to search

a good dispatching rule for each scenario.  The learning algorithm is then applied to obtain a

decision tree for dynamic selection of scheduling rules.



Chang (1996) proposed a fuzzy-based methodology to control the number of kanbans in a

generic kanban system.  In this approach, the simulated annealing algorithm is employed to

find the near optimal number of kanbans for different system status, and thereafter a training

instance is generated.  Then, the proposed fuzzy system will be generated for dynamic kanban

control.  Other work in developing a control system includes Huang and Chang (1992), Gupta

et al. (1989), Chandra and Talavage (1991), and Talavage and Shodhan (1992).

Adachi et al. (1988) proposed a pattern-recognition-based method for controlling a multi-

loop production system.  In their proposed approach, a state table is constructed for the

control-decision support system (CDSS) based on the simulation results.  After the user

indicates the desired level and importance weight for each performance measure, the one with

shortest distance to the desired pattern will be selected by the control system and the associated

performance level will be displayed.  These procedures are repeated until the user is satisfied

with the expected performance levels.  The authors further constructed a rule-based decision

support system (RBDSS) to control the same production system and compared the

performance of CDSS and RBDSS (Adachi et al., 1989).

Several researchers have attempted to use the knowledge-based approach to model the

shop floor control problem (Farhoodi, 1990; Pluym, 1990; Adachi et al., 1989).  Under this

approach, a central database with several production rules handles scheduling and monitors

system status.  Each production rule consists of a condition part and an action portion with a

form of an if-then clause.  Typically, these rules are based on the simulation results from

different scenarios, or the knowledge from the experience of schedulers.  When a decision-

making point is encountered, the database is scanned to find the condition that could match the

current situation, and the associated action is then executed.  However, it is not easy to

generate a database consisting of every possible situation for a system.  Besides, if this



database is large or the production rules are complex, it will take a long time to search the

database and it is impractical for real-time implementation.

O'Grady and Lee (1988) proposed a cell control system, called PLATO-Z, by using a rule-

based expert system and a multi-blackboard/actor model.  In the proposed control system, the

major functions are performed by four blackboard subsystems: scheduling, operation

dispatching, monitoring, and error handling.  Adequate messages are passed between

blackboard subsystems in order to achieve the control requirements.  This control framework

was further implemented by an object-oriented programming technique (O'Grady and

Seshadri, 1992).

Wu and Wysk (1988, 1989) also proposed a multi-pass, expert, control system for flexible

manufacturing cells.  Under their proposed system, some candidate rules are selected by a

knowledge-based system and then the performance of each candidate rule is evaluated through

simulation.  Weighted objective values are compared in order to achieve the multi-criterion

objective.  Cho and Wysk (1993) then refined it by using a neural network instead of the

knowledge-based system for selecting the candidate rules in the initial stage.

3.1.3 Agents to the Rescue?

It is difficult to use expert and knowledge-based systems to solve large, real-world scheduling

problems because of their limited knowledge and problem solving abilities.  To address this,

AI researchers have used the "divide and conquer" approach to develop distributed scheduling

approaches (Parunak et al., 1985).  This requires a technique to decompose the scheduling

problem and a collection of associated  knowledge-based systems that cooperate to solve the

overall problem (Zhang and Zhang, 1995).  Cooperation is handled through an agent paradigm.

Each agent is a complete knowledge-based system with its own long-term knowledge,

solution-evaluation criteria, languages, algorithms, and hardware requirements.  A multi-agent

system is created by integrating agents selected from a “library” of agents.



For example, one such multi-agent system could involve two types of agents: tasks and

resources.  Each task agent might schedule a certain class of tasks - such as material handling,

machining, or inspection - on those resources capable of performing such tasks.  The schedule

is generated using any task-related performance measure, such as minimize tardiness.  The

schedules generated by task agents become goals for the resource agents (Daouas et al 1995).

Each resource agent schedules tasks for its assigned resource(s) using resource-related

performance measures, such as maximize utilization.  Each resource agent will use its schedule

to decide whether it can meet the scheduling goals set by the task agents.  Clearly, a situation

can arise where no resource will accept a given task; coordination mechanisms must be

developed to avoid this situation.

While there is promise for these types of agent-based approaches, there are no general

guidelines for the design and implementation of such approaches.

3.2 Artificial Neural Networks

Neural networks, also called connectionist or distributed/parallel processing models, have been

studied for many years in an attempt to mirror the learning and prediction abilities of human

beings. Neural network models are distinguished by network topology, node characteristics,

and training or learning rules.  They are important because they can match current shop status

and the desired performance measures to near-optimal scheduling strategies and they can learn

(Yih and Jones, 1992).

Among the many network topologies and learning algorithms, the Hopfield network and

the multi-layer perceptron are preferred by several researchers for scheduling problems.

Therefore, in the following sections, these two networks will be briefly discussed, and the

related works on scheduling problems will be reviewed.

3.2.1 Hopfield Networks



A Hopfield network consists of nodes that are fully connected to each other bi-directionally.

Instead of a continuous value, this network takes only the binary or bipolar value as its input.

In addition, it is also regarded as a symmetrically-weighted network because the weights on

the links between nodes are the same in both directions.  When an input pattern is applied, the

Hopfield network will adjust the weights until it converges to a stable state.  This happens

when the output value of each node is no longer changed.  In other words, the network will

reduce its "energy" until it stabilizes in a hollow of the energy landscape.

Foo and Takefuji (1988a, b) used the Hopfield network to solve job shop scheduling

problems.  The scheduling problem was first mapped into a two dimensional matrix

representation.  Feasibility constraints and performance measures were then formulated as the

energy function, named cost function.  The characteristic of this energy function is that it will

result in very large value when the schedule is not feasible or the performance is far from

expectations.  The solution is obtained by reducing the energy in the network.  The authors

concluded that this approach could produce near-optimal solutions, though the optimality was

not guaranteed.  In addition, it was claimed that the proposed approach would not be feasible

in a large-scale problem.

Zhou et al. (1991) modified this approach by using a linear cost function and concluded

that this modification not only produced better results but also reduced network complexity.

Other works related to using the Hopfield network for the scheduling problem include Zhang

et al. (1991) and Arizono et al. (1992).

3.2.2 Supervised-learning neural networks

Through exposure to historical data, supervised-learning neural networks attempt to capture

desired relationships between the inputs and the outputs.  Back-propagation is the most

popular and widely used capture procedure. Back-propagation (Rumelhart et al. 1986, Werbos

1995) applies the gradient-descent technique to change a collection of weights so that some



cost function can be minimized. The cost function, which is dependent on weights and training

patterns only, is defined by:

C(W) = ½Σ (Tij- Oij) (1)

where the T is the target value, O is the output of the network, i represents the output nodes,

and j represents the training patterns.

After the network propagates from the input layer to the output layer, the error between the

desired output and actual output will be back-propagated to the previous layer.  In the hidden

layers, the error for each node is computed by the weighted-sum of errors in the next layer's

nodes.  In a three-layered network, the next layer means the output layer. The activation

function is usually a sigmoid function with the weights modified according to (2) or (3).

∆Wij = η Xj (1- Xj )(Tj - Xj ) Xi (2)
or

∆Wij = η Xj (1- Xj ) (Σ δkWjk ) Xi (3)

where Wjk is weight from node i to node (e.g., neuron) j, η  is the learning rate, Xj is the output

of node j, Tj is the target value of node j, and δk is the error function of node k.  If j is in the

output layer, (2) is used.  If j is the hidden layers, (3) is used.  The weights are updated to

reduce the cost function at each step. The process continues until the error between the

predicted and the actual outputs is smaller than some predetermined tolerance.

Rabelo (1990) was the first to use back-propagation neural nets to solve job shop

scheduling problems.  He allowed several job types, with different arrival patterns, process

plans, precedence requirements, and batch sizes.  Examples were generated to train the neural

network to select those characterizations of the manufacturing environments suitable for

various scheduling policies and applied to the target manufacturing system.  The neural

networks were trained for problems involving 3, 4, 5, 8, 10, and 20 machines.  To carry out

this training, a special, input-feature space was developed.  This space contained information

on both job characteristics (such as job types, number of jobs in each type, routings, due dates,



and processing times) and shop characteristics (such as number of machines and their

capacities).  Neural networks were tested on numerous scheduling problems with a variety of

performance measures.  For each test, the output of the neural network represented a relative

ranking of the available dispatching rules.  The one with the largest ranking was selected.

Rabelo showed that the same rule did not always minimize a specified performance measure

under all input conditions.  For example, SPT does not always minimize Mean Flow Time.  In

addition, he showed that the rule selected by the neural network never performed worse than

the presumed optimum.

3.2.3 Multi-layer Perceptrons

A multi-layer perceptron is a fully connected feed-forward network consisting of an input

layer, an output layer, and several hidden layers in between.  Each layer is composed of nodes

that are fully connected with those in the succeeding layer by weights.  Each node computes a

weighted sum of the elements in the preceding layer, subtracts a threshold, and then passes the

result through a nonlinear function, called an activation function.  Typically, the activation

function is a sigmoid energy function and the learning algorithm employed to adjust weights is

the Backpropagation algorithm (Rumelhart et al 1986). 

When an input pattern in training data is fed into the network, the error between the desired

output and actual output values will be "back-propagated" to the previous layer and the

weights will be adjusted accordingly.  This procedure is called training and it is done to obtain

the proper weight matrices so that the total is minimized.  Yih et al. (1993) conducted a three-

phased experiment to quantify the benefits of training.  Schedules were generated by a human

expert, an untrained neural network, and a neural network with training data refined by a semi-

Markov decision model.  The results indicated that the untrained neural network performed

worse than the human expert did.  However, the trained neural network outperformed both.

This implies that good training data will significantly improve network performance.



Several works have used multi-layer perceptrons with the Backpropagation training

algorithm in scheduling or in candidate rules selection.  Potvin et al. (1992) modified the

network structure but still used the Backpropagation learning algorithm to build up the

dispatcher for automated vehicles.  Rabelo et al. (1993) used modular neural networks to serve

as a candidate rule selector. In 1996, Chen and Yih discussed the impact of the network input

attributes to the performance of the resulting control system.

As mentioned above, Cho and Wysk (1993) utilized the multi-layer perceptron to take the

place of the knowledge based system in selecting candidate scheduling rules.  In their proposed

framework, the neural network will output a "goodness" index for each rule based on the

system attributes and a performance measure.  Sim et al. (1994) used an expert neural network

for job shop scheduling problem.  In their approach, an expert system will activate one of 16

subnetworks based on whether the attribute corresponding to the node (scheduling rules,

arrival rate factor, and criterion) is applicable to the job under consideration.  Then, the job

with the smallest output value will be selected to process.

Yih and Jones (1992) proposed using multi-layer perceptrons in selecting some candidate

rules for further evaluation of their performance.  In their proposed approach, a multi-layer

perceptron will take the attributes describing the system configuration and the performance

measures, and will output a proper matching score for each dispatching rule.  They also used

this approach for multiple criterion objectives.

Sun and Yih (1996) adopted their idea to develop a neural network based controller for

manufacturing cells.  In their approach, a neural network was trained to serve as decision-

maker that will select a proper dispatching rule for its associated machine to process the next

job.  Based on their results, the controller performs well under multiple criterion environments.

In addition, when the production objectives change, the controller can respond to such change

in a short time.



3.2.4 Unsupervised neural networks (competition-based)

Competition-based neural networks, which are good at classifying or clustering input data, can

also be applied to scheduling problems.  Since the classes or clusters are not known in

advance, the network must discover them by finding correlation in the input data.  Multi-

dimensional data sets are presented to the network, which adaptively adjusts its weights.  This

input presentation process is repeated until the network reaches stability - each output unit is

activated only for a particular subset of the input patterns.  Variations of these neural networks

have been used to solve scheduling problems.  For example, Bourret et al. (1989) applied some

of these principles to develop a neural network that was able to optimally schedule time

periods of low-level satellites to one or several antennas. The neural network was able to take

into account that each satellite has a given priority and several other operational constraints.

Min et al. (1998) adopted this concept and developed a methodology in a multi-objective

scheduling problem.  Kim et al. (1998) integrated the network with inductive learning module

to develop a real-time controller for flexible manufacturing systems.

3.2.5 Reinforcement learning

We noted above that supervised learning neural networks attempt to capture desired

relationships between inputs and outputs through exposure to training patterns.  For some

problems, the training period may be too short to find those relationships.  When the desired

response is obtained, changes to the neural network are performed by assessing penalties for

the actions previously decided by the neural network.  As summarized by Tesauro (1992), “In

the simplest form of this paradigm, the learning system passively observes a temporal

sequence of input states that eventually leads to a final reinforcement or reward signal (usually

a scalar). The learning system’s task in this case is to predict expected reward given an

observation of an input state or sequence of input states. The system may also be set up so that

it can generate control signals that influence the sequence of states.” For scheduling, the



learning task is to produce a schedule that minimizes (or maximizes) the performance measure.

Several procedures have been developed to train neural networks in a variety of generic cases.

One of the popularly adopted reinforcement learning algorithms is called Q-learning.  In

this approach, an action-value function, which assigns an expected utility to take a given action

in a given state, is defined.  The output of this function is called Q-values.  The relation

between Q-values and the utility values is as follows:

U(s) = Max
a

Q(a, s)

where U(s) is the utility value at state s.

Q(a, s) is the Q value of taking action a in state s.

The learning process in Q-learning is to find an appropriate Q-value associated with each

action in each state that the decision can be based on.

Rabelo et al. (1994) utilized a procedure developed by Watkins (1989), called Q-

learning, to solve dynamic scheduling problems. The procedure followed trends in the shop

floor and selected a dispatching rule that provided the maximum reward according to

performance measures based on tardiness and flow time. Zhang and Dietterich (1996) utilized

a procedure developed by Sutton (1988) called TD(λ) to schedule payload processing of

NASA’s space shuttle program. The scheduling system was able to outperform an iterative

repair scheduler that combined heuristics with simulated annealing.

Kim and Lee (1995) formulated the machine-scheduling problem as a reinforcement

learning problem and then developed a learning-based heuristic, called EVIS, for solving the

scheduling problem.  The EVIS, implementing reinforcement learning with the genetic

algorithm, was then applied to a few deterministic scheduling problem instances.  The results

show that the proposed heuristic has good average-case performances for most of the problem

instances.



Another alternative in reinforcement learning involves using the CMAC network.  A

CMAC network can be regarded as an associative memory system which stores the appropriate

output in the associated memory cells.  As mentioned by Miller et al. (1990), the CMAC

network is an alternative to the backpropagated, multilayer, neural network because it has the

advantages of local generalization, rapid training, and output superposition.  Several researches

have been involved in applying the CMAC network to develop a controller.  Miller et al.

(1990) demonstrated the application of CMAC networks in real-time robot control without

providing any initial knowledge, in character recognition, and in signal processing.  Lin and

Kim (1991) constructed a CMAC-based controller and demonstrated its capability in the

inverted pendulum problem.  Moody (1989) proposed a Multi-Resolution CMAC (MRC)

which combines some CMAC networks with different resolution to increase the accuracy and

generalization ability.  The proposed approach shows good performance and on-line learning

ability in prediction of a time series.

3.3 Genetic algorithms

Genetic algorithms (GA) provide an optimization methodology based on a direct analogy to

Darwinian natural selection and mutations in biological reproduction.  In principle, genetic

algorithms encode a parallel search through concept space, with each process attempting

coarse-grain hill climbing (Goldberg 1988). Instances of a concept correspond to individuals of

a species.  Induced changes and recombinations of these concepts are tested against an

evaluation function to see which ones will survive to the next generation.  The use of genetic

algorithms requires five components.

1. A way of encoding solutions to the problem -- fixed length string of symbols.

2. An evaluation function that returns a rating for each solution.

3. A way of initializing the population of solutions.



4. Operators that may be applied to parents when they reproduce to alter their genetic

composition such as crossover (i.e., exchanging a randomly selected segment between

parents), mutation (i.e., gene modification), and other domain specific operators.

5. Parameter setting for the algorithm, the operators, and so forth.

A number of approaches have been utilized in the application of genetic algorithms (GA)

to job shop scheduling problems (Davis 1985, Goldberg and Lingle 1985, Starkweather et al.

1992):

1. Genetic algorithms with blind recombination operators have been utilized in job shop

scheduling. Their emphasis on relative ordering schema, absolute ordering schema,

cycles, and edges in the offsprings will lead to differences in such blind

recombination operators.

2. Sequencing problems have been addressed by mapping their constraints to a Boolean

satisfiability problem using partial payoff schemes.  This scheme has produced good

results for very simple problems.

3.  Heuristic genetic algorithms have been applied to job shop scheduling.  In these

genetic schemes, problem specific heuristics are incorporated in the recombination

operators (such as optimization operators based).

Starkweather et al. (1992,1993) were the first to use genetic algorithms to solve a dual -

criteria job shop scheduling problem in a real production facility, a beer plant.  Those criteria

were the minimization of average inventory in the plant and the minimization of the average

waiting time for an order to be selected.  These criteria are negatively correlated - as the

inventory increases (decreases), the wait decreases (increases).  To represent the

production/shipping optimization problem, a symbolic coding was used for each member

(chromosome) of the population.  In this scheme, customer orders are represented by discrete

integers.  Therefore, each member of the population is a permutation of customer orders.  The

GA used to solve this problem was based on blind recombinant operators.  This operator

emphasizes information about the relative order of the elements in the permutation, because

this impacts both inventory and waiting time. A weighted sum of the two criteria was utilized



to rank each member of the population.  That ranking was based on an on-line simulation of

the plant operations.  This approach generated schedules that produced inventory levels and

waiting times that were acceptable to the plant manager.  In addition, the integration of the

genetic algorithm with the on-line simulation made it possible to react to plant dynamics.

These applications have emphasized the utilization of genetic algorithms as a "solo"

technique.  This limits both the complexity of the problems solved and levels of success.

Recent research has demonstrated the sensitivity of genetic algorithms to the initial population.

When the initial population is generated randomly, genetic algorithms are shown to be less

efficient that the annealing-type algorithms, but better than the heuristic methods alone.

However, if the initial population is generated by a heuristic, the genetic algorithms become as

good as, or better than the annealing-type algorithms.  In addition, integration with other

search procedures (e.g., tabu search) has enhanced the capabilities of both.  This result is not

surprising, as it is consistent with results from non-linear optimization.

3.4 Fuzzy logic

Fuzzy set theory has been utilized to develop hybrid-scheduling approaches.  Fuzzy set theory

can be useful in modeling and solving job shop scheduling problems with uncertain processing

times, constraints, and set-up times.  These uncertainties can be represented by fuzzy numbers,

which are described by the concept called interval of confidence.  These approaches usually

are integrated with other methodologies (e.g., search procedures, constraint relaxation).  For

example, Slany (1994) stressed the imprecision of straightforward methods presented in the

mathematical approaches and introduced a method known as fuzzy constraint relaxation,

which is integrated with a knowledge-based scheduling system. Chang (1996) and Chang and

Yih (1998, 1999) proposed a machine learning methodology to develop a fuzzy rule bases

system for controlling a kanban system. Grabot and Geneste (1994) use fuzzy logic principles

to combine dispatching rules for multi-criteria problems.   Krucky (1994) used fuzzy logic to



minimize setup times for a production line with a medium-to-high product mix by clustering

assemblies into families of products that share the same setup.  The clustering was achieved by

balancing a product’s placement time between multiple-high-speed placement process steps.

Tsujimura et al. (1993) presented a hybrid system, which uses fuzzy set theory to model the

processing times as Triangular Fuzzy Numbers (TFNs).  Each job is defined by two TFNs, a

lower bound and an upper bound. A branch and bound procedure is utilized to minimize

makespan through the shop based on these estimates.

3.5 Commercial systems

A number of university software systems use these techniques to do scheduling. A few

commercial software systems use expert systems and genetic algorithms.  Commercial

hardware and software systems are available that implement neural networks, but none have

been designed specifically for scheduling.

4. MANUFACTURING EXECUTION SYSTEMS (MES)

During the 1990s a new category of software system - Manufacturing Execution System

(MES) - emerged which consolidated and automated a number of functions involved in the

management and operation of a production facility. An MES is a collection of hardware/

software components that enables the management and optimization of production activities

from order launch to finished goods.   While maintaining current and accurate data, an MES

guides, initiates, responds to and reports on plant activities as they occur.  An MES provides

mission-critical information about production activities to decision support processes across

the enterprise (MESA 1997, Wallace 1999).  The term "order launch" is to be interpreted as

initiation of physical production activities, typically beginning with materials preparation or

machine preparation.  Activities relating to planning and scheduling physical production

operations are included within the scope of MES but activities related to defining physical



operations are not.   The word “component” is used in a generic way to mean a separable

portion of a larger whole.

Wallace (1999) provides a list of 12 major functions, derived from the original list in

(MESA 1997).  These functions are similar to those found in the PERA model described in

section 3 in this chapter.

1. resource allocation and tracking 7. quality management

2. operations/ detailed scheduling 8. process management

3. production unit dispatching 9. maintenance management

4. specification management 10. product tracking

5. data collection/acquisition 11. performance analysis

6. labor management 12. material management

The relationship between these functions and software products that call themselves MES

is not clear.   Some MES products can be purchased prepackaged as a single unit that performs

all of these functions.   Many other products provide only a subset of these functions; some call

themselves MES, some do not.    Standard interfaces would facilitate the integration of

components into an overall MES and facilitate the integration of that MES with other

enterprise software applications such as ERP (enterprise resource planning).  No viable

standards are emerging to fulfill this need, but there are four organizations looking at the

problem: ISO, ISA, SEMI, and OMG.

Within the International Organization for Standardization (ISO), the MANufacturing

management DATa Exchange or MANDATE work in  TC184/SC4/WG8 is focusing MES

(http://www.iso.ch/meme/TC184SC4.html).  Within ISA, MES-related work is being done in

SP95 (http://www.isa.org/sc/committee/1,1512,145,00.html), see 2.1.   Within SEMl, MES-

related standards are being generated as part of the standardization of CIM framework

specifications, (http://www.semi.org/web/wstandards.ns), see 2.2.  Within OMG, the MES-

related work is being done by the Manufacturing Execution Systems / Machine Control group



(http://www.omg.org/homepages/mfg/mfgmesmc.htm).  Most of the remaining material in this

section is based on work done in OMG working group.

4.1 A More Detailed Look at MES Data

MES functions create, collect, modify, analyze, react to, and manage a great deal of data.  That

data is summarized below:

Dispatch Data – job/operation dispatch list, or commands to operators and equipment.

Equipment Resource Data – resource state, staffing, setup, current operations and

assignments, and job usage history

Labor Resource Data – personnel availability and tracking information, and job

assignment history

Maintenance Data – machine availability data, maintenance history, and usage data.

Material Location Data – location and state of materials with respect to active

resources and material handling components

Order Data – units of a particular product to be manufactured, including status and

associations with particular material groups

Performance, Cost and usage data – cost of operations performed, and materials and

resources used, idle time

Process Control Data – process control parameters

Product Data (WIP)  – the amount, state, and disposition of materials in production and

their relationship with manufacturing orders

Quality Analysis Data – data resulting from the quality analysis function, that is

interpreted measurements of process and product

Quality Data – product and process measurement data, which can include such data

taken from process operations.

Resource Description Data – characteristics of labor and equipment resources such as

capabilities, skills, types, and assigned cost.

Schedule Data – allocation of resources to jobs and processes per time-period.

Shop Floor Data – raw data collected by data collection systems that can be used to

derive Product (WIP) data, Resource data, Performance data, and so on

Specification Data – specifications for how to perform a manufacturing process,

including sequence of operations to be performed, equipment, tooling and skills

requirements, and materials to be used.



Tooling Resource Data – Usage, location and allocation information, which may be used

for tracking, scheduling and maintenance of tools.

Table 2 shows the nature of the data usage by the MES functions.  The numbers in each cell

correspond to the numbers assigned above.  The designations HRM, ERP, and PPE refer to

non-MES systems of the enterprise that use some of the same data.  HRM refers to Human

Resource Management systems, ERP refers to Enterprise Resource Planning Systems, and PPE

refers to Product and Process Engineering systems.

Table 2 Relationship of Data to MES Activities

4.2 MES Object Models

An analysis of the MES functions and the data in Table 2 led to the development of the two

MES object models shown in Figure 6 and Figure 7.   These models, which are based on the

work in  (Ray and Wallace 1995, OMG 1997b), organize the functions and data in a way that

facilitates the implementation of MES components based on object or component middleware

technology.  They also provide an implementor or integrator with an organization of a

distributed MES architecture that simplifies integration with other manufacturing information

systems.

The partitions that we have shown with dotted boxes in Figure 6, are groupings of model

entities that are closely coupled or functionally similar. Coupling between these partitions

should be supported via domain specific names or keys.  Each partition in the model is

described in detail below.  While all these partitions are important to MES, they need not all be

supported directly within an MES.  We make special note below of those that we consider to

be core MES partitions.   The tags, shown in italics above or below each partition box in the



figures, are general characterizations of the resource entities within the corresponding

partition.  These are further elaborated in the text below:

Orders – The Orders partition contains two planning entity classes: those that are

created by ERP systems and those which may be MRPII entities.  This distinction is

made here since it is not clear whether MRPII is considered an ERP or MES function.

We have tagged this partition “Logical Instances” in the diagram to indicate that the

entities within it are Logical Resources which merely represent groups of Physical

Resources or planned Physical Resources that are modeled in other partitions.

Schedule & Dispatch – This partition is at the heart of MES operations, containing the

primary entities involved in scheduling and dispatching.  If the MES supports

reactive scheduling, then the internal components must be able to share a common

understanding of Process Description.  Therefore, the model has a separate entity for

Process Description, which is distinct from (and an instance of which is derived from

a) Process Specification.  We note with the tag “Active Instances” that unlike the

entities in the other partitions, many Schedule & Dispatch entities can initiate actions.

Specification Management – The entities in this partition have similar access

characteristics, but only a loose coupling.  This means that some efficiency may be

gained by putting all these entities into one component.  Nevertheless, as long as all

access requirements shared by these entities are met, these entities could be stored in

multiple components. We note with the tag “Types” that this partition contains

information resource entities that provide type information used to instantiate or

describe other entities.

Materials –  The entities in this partition are related to material instances such as

material status, history, and genealogy data.  It may also provide inventory

information.   We note with the tag “Passive Instances” that the entities in this

partition represent Physical Resources the  are manipulated or acted upon by Active

Resources represented in other models.

Figure 6. Simplified object model1

                                                                
1 The graphic notation used in this figure and subsequent object models is a simplified version
of the Object Modeling Technique (OMT) notation described in (Rumbaugh 1991).



Figure 7. Detailed view of scheduling and dispatching

The entities of the MES Object Model shown in figures 6 and 7 are described in detail

below:

Active Resource – a physical resource, or a logical grouping a resources, that can

perform process operations and supports specified capabilities during manufacturing

activities -- people and equipment such as machines, robots, storage devices,

transport devices, etc.

Capability – the ability of a resource to perform a specified operation.  For human

resources, a capability is sometimes called a (certified) skill.  For Equipment

resources, this potential may be dependent on Setup and on having an appropriately

skilled operator.

Consumable – a unit of material that is used and expended during manufacturing or

support processes.

Controller – a software system, or human agent, that provides the intelligence needed

by an Active Resource to perform all or part of a process operation automatically.

Item Specification — the complete description of a kind of Material item including its

shape, weight, handling characteristics, image, and so on.

Job – a unit of work assigned to an Active Resource.  At the Schedule/Dispatch level,

the unit of work is a Lot; at lower levels, the unit of work is a process operation,

transport operation, or operation step.

Job Step  – is an instantiation of a Step Description .  Depending on its granularity, a

Job Step becomes a Job for the Active Resource to which the Step execution is

assigned.

Kit – a physical collection of Material Items that is handled as a unit.

Labor – a human Active Resource (employee or contractor or group) who performs

certain Jobs directly or in collaboration with a Machine.  The ability of a human

resource to perform a specific kind of process with specific kinds of equipment is

called a certified skill.

Lot – the unit of product into which a Manufacturing Order is decomposed for

scheduling, dispatching and tracking.  A Lot is a conceptual Material Group.  The



actual corresponding Product Units on the factory floor may be decomposed and

regrouped, depending on production policies and needs.

Manufacturing Bill of Materials — a list of the types and quantities of all Materials

needed to manufacture a unit of product or to perform a particular process.

Manufacturing Order – a quantity of a particular product to manufacture as specified

by an ERP system.

Master Production Schedule – A long-term schedule created and maintained by

enterprise planning systems that defines quantities of particular products to be

produced in particular time-frames based on customer demands, manufacturing

capacity, and resource availability.

Material Item – a physical resource that is acted upon or used by an Active Resource in

the performance of a manufacturing activity.  It is characteristic of most Material

Items that they can be moved around the factory floor, and it is often the case that

their location is tracked in some way.

Material Group — a logical or physical collection of Material instances.

Process Description – a breakdown of a process into “sub-tasks” or steps, expressing

the requirements for each step and its relationship to other steps in the recipe. Every

Process Description has an associated Active Resource that is responsible for

planning and executing the process described.  Process Descriptions come in many

forms: NC programs, routings, operation sheets, recipes, etc.

Process Specification – archival form of a Process Description, usually a document.

An Information Resource is targeted for a particular type of Active Resource.  It  s

copied as needed to create Process Descriptions for individual resources.

Product In-process – a Material Item, which becomes part of a final product.

Product Request – a unit of product that is the basis for planning/scheduling activities

at the highest level of a Manufacturing Execution System.

Product Unit — a quantity of product (or a group of In-process product items) that

undergoes manufacturing activities together.

Resource Schedule – a collection of assignments of Active Resources to Job Steps at

specific times.

Setup – a particular configuration of an Equipment resource that results in a set of

active Capabilities for that resource.



Step Description — a part of a Process Description that identifies a Job Step to be

performed,  resources necessary to perform the Job Step, other information needed to

plan the Job Step, and, usually, the Process Specification that the Active Resource

will use to perform the Job Step activity.

Stock Material – a kind of Material that is the starting point for, or an ingredient in, a

unit of product.

Tool – a Material Item used by an Active Resource in the performance of some

manufacturing activity.  A Tool is a Material Item that is needed during the

manufacturing process but is not (usually) consumed and does not become part of the

finished goods.  Tools are used to set-up an equipment resource, or augment a

workstation setup, in order to enable the workstation to perform a particular process

operation.

4.3 Market trends and future directions

Originally predicted to be a strong new market area, the MES product category had only grown

about $218 million in 1998 (Callaway 1998).  This has been attributed to such diverse factors

as manufacturing management’s preoccupation with higher level enterprise systems such as

Enterprise Resource Planning (ERP) and Supply Chain Management (SCM), to resources

being diverted for Year 2000 projects.  No matter what the cause, MES has not become a

ubiquitous system across all manufacturing domains.

However, the functionality it targeted remains important as the changing marketplace for

manufactured goods forces manufacturers to respond more quickly to market opportunities and

participate in more dynamic supply chains.  An MES provides the higher level of integration

needed to support rapid access to data, as well as the means to rapidly respond to new

production tasks or priorities.  Because this need still remains, vendors in other product

categories have expanded their product line to include many of the MES functions described in

section 2.2 with mixed success.  This encroachment  has come from above with ERP systems

and from below  with Open Control Systems.  While its certain that the functionality and data



described in this section will be available in the factory of the future, it is difficult to predict

what systems will be managing it.  This underscores the importance of developing standard

interfaces and data models for this area, so that manufacturers can make use of this technology

no matter what the products are called or where the lines are drawn between them.

5. CHAPTER SUMMARY

This chapter has addresses three subjects related to the control of shop floor operations: control

architectures, AI-based scheduling, and manufacturing execution systems (MES).  The ideas

discussed in this chapter are applicable to many different types of manufacturing and service

industries.  To date, very few of the advanced scheduling techniques have been incorporated

into commercial MES software packages; and, little or no effort has been put forth to integrate

these packages into an open architecture for shop floor control.  We expect this situation to

change dramatically over the next few years as companies push more toward  Internet-based,

electronic commerce.
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